TexText
Publisheddd in none, 9999
1. test
$$
y = ax + b \\
\alpha \alpha = \beta + \gamma
$$
↓↓↓
2. aligned
$$
\begin{aligned}
y &= ax + b \\
\alpha \alpha &= \beta + \gamma
\end{aligned}
$$
↓↓↓
3. aligned
\begin{aligned}
y &= ax + b \\\\\\\\
\alpha \alpha &= \beta + \gamma
\end{aligned}
↓↓↓
\begin{aligned} y &= ax + b \\\
\alpha \alpha &= \beta + \gamma \end{aligned}
4. align
$$
\begin{align}
y &= ax + b \\
\alpha \alpha &= \beta + \gamma
\end{align}
$$
↓↓↓
5. align
\begin{align}
y &= ax + b \\\\\\\\
\alpha \alpha &= \beta + \gamma
\end{align}
↓↓↓
\begin{align} y &= ax + b \\\
\alpha \alpha &= \beta + \gamma \end{align}
6. align*
$$
\begin{align*}
y = y(x,t) &= A e^{i\theta} \\
&= A (\cos \theta + i \sin \theta) \\
&= A (\cos(kx - \omega t) + i \sin(kx - \omega t)) \\
&= A\cos(kx - \omega t) + i A\sin(kx - \omega t) \\
&= A\cos \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) + i A\sin \Big(\frac{2\pi}{\lambda}x - \frac{2\pi v}{\lambda} t \Big) \\
&= A\cos \frac{2\pi}{\lambda} (x - v t) + i A\sin \frac{2\pi}{\lambda} (x - v t)
\end{align*}
$$
↓↓↓
7. \mbox
$$
\mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\
&= 0.2204 + 0.3370
$$
↓↓↓
8. \mbox
$$
\mbox{全平方和} = \mbox{群間平方和 + 群内平方和(残差平方和)} \\
= 0.2204 + 0.3370
$$
↓↓↓
9. \mbox aligned
$$
\begin{aligned}
\mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\
&= 0.2204 + 0.3370
\end{aligned}
$$
↓↓↓
10. \mbox aligned
\begin{aligned}
\mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\\\\\
&= 0.2204 + 0.3370
\end{aligned}
↓↓↓
\begin{aligned} \mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\
&= 0.2204 + 0.3370
\end{aligned}
11. \mbox align
$$
\begin{align}
\mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\\\\\
&= 0.2204 + 0.3370
\end{align}
$$
↓↓↓
12. \mbox align
\begin{align}
\mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\\\\\
&= 0.2204 + 0.3370
\end{align}
↓↓↓
\begin{align} \mbox{全平方和} &= \mbox{群間平方和 + 群内平方和(残差平方和)} \\
&= 0.2204 + 0.3370
\end{align}
以上
